
Abstract. As a continuation of our previous work for
the construction of expansion basis sets for the quantum
mechanical treatment of N -body problems of interest for
intermolecular and intramolecular and reactive dynam-
ics of polyatomic molecules and clusters, we develop
here a group-theoretical procedure which allows us to
obtain explicitly the hyperspherical harmonics for the
description of the collective motions. The coordinates
involved are related to the invariants of the N -body
system, which are referred to the moments of inertia.
Although this work is limited to the case where both
external and internal (kinematic) rotations are zero, and
the example of N ¼ 4 is explicitly worked out, this
method, which gives hyperspherical harmonics as linear
combinations of ordinary spherical harmonics, can be
extended to cover the general N -body case.

Keywords: N -body problem – Hyperspherical coordi-
nates and harmonics – Kinematic invariants – Projection
operator

1 Introduction

The dynamical treatment of N -atom systems involves a
considerable number of variables (3N � 3) whose nature
depends on the choice of the coordinate system, which
can be crucial for a good representation of all the aspects
of the physical problem. We here are concerned with
N � 4. The N ¼ 3 case has been studied extensively [1, 2,
3, 4, 5]. After the standard operation of separation of the
motion of the center of mass, one has many alternatives
for the remaining variables [6]. Among these, how-
ever,the symmetric hyperspherical coordinates play a
privileged role that we extensively investigated in several

preceding papers [4, 7, 8]. In previous papers we have
shown that in a symmetric hyperspherical framework the
variables are broken up into internal coordinates (six in
the case of four bodies) and three rotational coordinates,
which specify the orientation of the system under the
form of Euler angles. Moreover internal coordinates are
subsequently broken up into kinematic invariants [9]
(that we call simply ‘‘invariant’’) and kinematic angles
[8]. We also considered the kinetic energy operator for a
four-particle system in symmetric hyperspherical coor-
dinates [10], and it has been found that the terms
depending on invariant coordinates and those depending
on the kinematic angles are separated in the expression
of the operator. By adding a potential function to the
kinetic energy operator, one obtains the Hamiltonian of
the system whose eigenfunctions, which have to be
found, contain all available information about the
system.

Except for the simplest problems, no analytical
solution can be obtained for the eigenfunctions of the
Hamiltonian operator, and one has to turn to a repre-
sentation of the desired solution, as a finite series of basis
functions. To this aim, it is crucial to make for the basis
set an optimal choice, which in general is that of using
the eigenfunction of the zero potential Hamiltonian
operator, i.e. the kinetic energy operator.

Unfortunately, if coordinates other than Cartesian are
adopted to represent the system, the kinetic energy
eigenvalue problem itself is not trivial, but in the partic-
ularly relevant case of interest to us here, when we con-
cern ourselves with hyperspherical coordinates, the
desired basis functions are the hyperspherical harmonics.

We note that the identification of the basis function
set can be mandatory because a suitable choice not only
may drastically cut down the number of functions re-
quired to obtain a prescribed numerical convergence
(and then the time and memory needed for the calcula-
tion) but also can be crucial from the viewpoint of
overcoming problems arising from singularities [11, 12].

The eigenfunctions for the kinematic rotation part of
the kinetic energy operator for four-body systems have
already been treated in a previous paper [13]. Regarding
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the solution of the invariant part, in Ref.[9] we obtained
some relationships for the eigenfunctions. Early work is
due to Zickendraht [14], and more recently a very
complete treatment has been reported by Wang and
Kuppermann [15]. The aim of the present work is to
describe relevant features regarding the invariant part of
the kinetic energy operator in symmetric hyperspherical
coordinates. The proper way to do that is to account in a
systematic way for the symmetry properties of the
invariant terms in the Laplacian which reflect the sym-
metry of the space spanned by the invariant coordinates.
Indeed having properly defined the invariant space, one
can proceed to derive the symmetry properties of the
eigenfunctions [9, 11, 12]. Here we give a simple geo-
metrical treatment, by applying it to the four-body case,
enforcing the fact that the symmetry of the space is the
SOð3Þ/Oh manifold. This leads to specific restrictions on
the expansion basis set. This study of this important
aspect can be intended as complementary to other pre-
vious approaches to four bodies [16, 17] and in partic-
ular to the work of Wang and Kuppermann [15] where
the full problem of the invariant eigenfunctions has been
tackled.

The treatment applies to systems of any complexity
with minor modifications, in spite of the fact that the
actual implementation will inevitably be increasingly
complicated [18], unless one makes recourse to approx-
imations. Finally we show how to provide a represen-
tation of the invariant eigenfunctions in terms of
spherical harmonics. Perspective applications of such a
basis set would be its use not only for expanding ei-
genfunctions of the invariant part of the hyperspherical
Hamiltonian but also to model elementary collective
motions of polyatomic systems as shown in Ref. [19] for
the case of the ammonia inversion.

The plan of the paper is as follows. In Sect. 2 we give
a brief description of hyperspherical coordinates intro-
ducing the invariants and the kinematic angles. We show
the invariant part of the kinetic energy operator in
Sect. 3. Section 4 is dedicated to the general properties
of the functions to be found. The symmetry properties of
the eigenfunctions are treated in Sect. 5 and two ways to
obtain the invariant eigenfunctions in terms of hyper-
spherical harmonics are given in Sect. 6. We summarize
some concluding remarks in Sect. 7.

2 Hyperspherical coordinates

The hyperpsherical coordinates in the symmetric param-
eterizations are obtained starting from the ðN � 1Þ
Jacobi vectors of an N -particle system [7, 8, 10, 13, 20].

The Jacobi vectors are proper linear combinations of
the N Cartesian position vectors of the particles by
coefficients depending only on the masses of the particles
[21, 22, 23, 24].

The standard procedure to introduce Jacobi vectors
involves the separation of the center-of-mass vector and
the next determination of these as follows:

xj ¼
lj�1
lN

� �1
2
Pj

i miriPj
i mi
� rjþ1

 !
; ð1Þ

where xj is the jth Jacobi vector and the ri are the
particle position vectors in the center-of-mass reference
frame.

The l’s are mass-dependent factors:

lj ¼
mjþ1ðMjÞ

Mjþ1

� �
;

lN ¼
PN

k¼imi

MN

� � 1
N�1

;

ð2Þ

where Mj ¼
Pj

i mi, and MN is the total mass of the
system.

To switch to the hyperspherical coordinates, we apply
the singular value decomposition [25] to a matrix con-
taining columnwise the Jacobi vector components.

If we call that matrix F

F ¼ RXKT ; ð3Þ
where R is a 3� 3 orthogonal matrix, K is an
ðN � 1Þ � ðN � 1Þ orthogonal matrix [26, 27] and X is
a 3� ðN � 1Þ diagonal matrix whose elements ni are
such that ni 6¼ 0 for i � 3 and ni ¼ 0 for i > 3. The
superscript T stands for the transpose of a matrix.

Owing to the nonuniqueness of the singular value
decomposition, we assume 0 � n1 � n2 � n3. In the
special case of four bodies, n1 also takes negative
values and the previous expression is modified as fol-
lows:

0 �j n1 j� n2 � n3 : ð4Þ
R and K are respectively, SOð3Þ and SOðN � 1Þ matrices
parameterized respectively, by 3 and 3N � 9 angular
variables, which are 3N � 6 of the hyperspherical
coordinates.

In particular the 3N � 9 angles of K perform the
so-called kinematic rotations [7, 8, 13, 28], describing
motions of the system that leave unchanged the three
moments of inertia, while the three parameters defining
R describe the rotations of the whole system and are
typically taken to be Euler angles [27] specifying the
position of the body-fixed reference frame with respect
to a space-fixed reference frame.

The three remaining degrees of freedom are the ele-
ments n of the X matrix, which are pure shape coordi-
nates [29, 30, 31, 32] and are directly related to the
moments of inertia of the system [19]. Since the n’s are
invariant under kinematic rotations, we call them simply
invariants [9].

Generally, the three invariants are parameterized as a
function of two additional angular variables, which
complete the set of the (3N � 4) angles spanning the
3N � 4-dimensional hypersphere, plus the hyperradius
q, whose square corresponds to the sum of the squares of
the moduli of the Jacobi vectors.

3 The quantum mechanical Hamiltonian
for a four-body system

The kinetic energy operator in the hyperpsherical
coordinates assumes the following form:
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T̂ ¼� �h2

2l
q�ð3N�4Þ @

@q
qð3N�4Þ @

@q
þ q2T̂XðX3N�4Þ

� �
; ð5Þ

where T̂XðX3N�4Þ is the angular part of the operator
depending on the 3N � 4 angular variables of the
hyperspherical representation and l is the reduced mass
of the system (see Eq. 2).

T̂X represents the Laplacian on the unit Sð3N�4Þ

sphere, and can be interpreted as the operator that gives
the quantum analogue of the classical hyperangular
momentum tensor [24, 33, 34]. The operator has been
determined in previous work [10], and also by Kupper-
mann [35], for a four-body system.

Four-body systems move on a nine-dimensional hy-
persphere and the angular part of the kinetic energy
operator is the Laplacian on a eight-dimensional hy-
persphere. The full nine-dimensional hyperpshere is
spanned by three kinematic rotation angles [28, 30],
three external rotation Euler angles and by the three
invariants n [9]. The kinetic energy operator for a four-
body system, in which we are interested here, assumes
the following form:

T̂4 ¼ T̂X þ T̂XK þ T̂XR ; ð6Þ
where the operator T̂X depends only on the invariants n,
the operator T̂XK includes partial derivatives with respect
to the kinematic rotation angles multiplied by factors
depending on the n’s and T̂XR contains similarly Euler
angle partial derivative terms multiplied by the same n
factors.

Our work here will be devoted to the eigenvalue
problem related to the T̂X operator with the aim of
finding eigenfunctions following a group-theoretical
method, while the full problem has already been tackled
by Zickendraht [36] and Wang and Kuppermann [15].

4 Hyperspherical harmonics as wavefunctions

Let T̂ be the kinetic energy operator for a four-body
system and W the eigenfunction corresponding to the
eigenvalue k. The usual separation of variables on the
eight-dimensional hypersphere of radius q (the hyperra-
dius) leads to the following form for the eigenfunction:

Wk ¼
1

q
jkþ3ðkqÞXkðX8Þ ; ð7Þ

where k = 1,2,. . . is the grand angular momentum
quantum number [8], k is the wavenumber defined by
E ¼ k2�h2

2l and Xk is the harmonic function on the eight-
dimensional hyperpshere spanned by the angular vari-
ables collectively denoted by X8. The function jkþ3 is a
spherical Bessel function.

The hyperradial part of the wavefunction is well
known, so we need only the ’’surface’’ functions Xk. No
matter how the angular variables X8 are defined (in a
symmetric or asymmetric way), their eigenvalues are the
same as the grand angular momentum operator

ðkþ 3Þðkþ 4Þ ð8Þ

and then a calculation is not needed.

As already stated, in the case of N bodies, the hy-
persphere is (3N � 4)-dimensional.

We now consider the kinematic invariant wavefunc-
tions. Let us write Wk as a function of the three Jacobi
vectors (x1; x2; x3):

Wk ¼ Wkðx1; x2; x3Þ ð9Þ
and let K and J be, respectively, the internal (kinematic
rotations) and external angular momenta in our sym-
metric hyperpsherical representation.

For K = 0 and J = 0 the functions Wk depend un-
iquely on the kinematic invariants (n1; n2; n3),

Wkðx1; x2; x3Þ ¼ Wkðn1; n2; n3Þ ; ð10Þ
and analogously, the kinetic energy operator T̂4 depends
uniquely on the n’s:

T̂X ¼ �
�h2

2l
r2 þ 2ffiffiffiffi

D
p r

ffiffiffiffi
D
p
r

� �
; ð11Þ

where D ¼ ðn22 � n21Þðn23 � n22Þðn23 � n21Þ is the volume ele-
ment andr2 andr are the usual Laplacian and gradient
on the three-dimensional Cartesian (n1; n2; n3) space.

The Wk can be calculated by solving the equation

T̂X Wk ¼ EkWk ; ð12Þ
where Ek represents the energy of the system.

Note that taking D as the volume element leads to the
following normalization condition, for the Wk:

hWk j Wki ¼
Z
j Wk j2

ffiffiffiffi
D
p

dn1 dn2 dn3 : ð13Þ

We find it convenient to absorb the volume element in
Wk in order to include it into the definition of the
function Uk [9],

Uk ¼
ffiffiffiffi
D
p

Wk ; ð14Þ
that we will refer to as the internal wavefunction.

The normalization becomes simply:

hUk j Uki ¼
Z
j Uk j2 dn1 dn2 dn3 : ð15Þ

The correspondig internal equation has the form of a
Schroedinger equation:

� �h2

2l
r2 þ V2

� �
U ¼ EU ; ð16Þ

where r2 is the Euclidean Laplacian and V2 is a so-called
extra potential term arising only for a quantum mechan-
ical picture of the system [37]:

V2 ¼
�h2

2l
1ffiffiffiffi
D
p r2

ffiffiffiffi
D
p

¼ � �h2

2l
n21 þ n22
ðn22 � n21Þ

þ n22 þ n23
ðn23 � n22Þ

þ n21 þ n23
ðn23 � n21Þ

 !
: ð17Þ

We turn now to the solution of Eq. (12). To this aim, we
look at the zero-energy limit of the hyperradial part of
the kinematic invariant wavefunction Wk [9],
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lim
k!0

WðqÞ
kkþ3 ¼ lim

k!0

1

q3

jkþ3ðkqÞ
kkþ3 ¼ ðconstÞqk ; ð18Þ

which leads to the following expression for the total
wavefunction of Eq. (7):

Wkðx1; x2; x3Þ ¼ qkXkðX8Þ : ð19Þ
In the general case (K 6¼ 0, J 6¼ 0) the hyperspherical
harmonics Xk (the surface functions) are polynomials in
the nine components of the unit vector on the surface of
the eight-dimensional hyperpshere. When they are
multiplied by a factor qk they become homogeneous
polynomials of degree k in the nine cartesian compo-
nents of the Jacobi vectors.

Setting K ¼ 0 (kinematic rotations) and J ¼ 0
(external rotations) means to require the invariance
under kinematic and external rotations of the wave-
function Wk. The kinematic invariant wavefunctions Wk
in which we are interested here already exhibit, by
definition, the invariance under kinematic rotations,
and the rotational invariance can be obtained if the
wavefunction involves Jacobi dot product xa � xb and
Jacobi triple product x1 � ðx2 � x3Þ only. Thus, in terms
of the n’s, we can write the following form for the
kinematic invariant wavefunction with zero angular
momentum:

Wkðn1; n2; n3Þ ¼
Xk

ði;j;k;iþjþk¼kÞ
Ck

ijkn
i
1n

j
2n

k
3 ; ð20Þ

where i; j; k = 0,2,4,. . . and where the C’s are coefficients
which have to be determined by solving Eq. (12) in the
zero-energy limit (E=0):

� �h2

2l
r2 þ 2ffiffiffiffi

D
p r

ffiffiffiffi
D
p
r

� �
Wk x1; x2; x3ð Þ ¼ 0 : ð21Þ

By inserting Eq. (20) into Eq. (21) we obtain a homo-
geneous system of linear equations whose solutions are
the C’s.

5 The symmetry properties of the kinematic invariant
wavefunctions

The kinematic invariant wavefunction Wkðn1; n2; n3Þ
enjoys the symmetry properties of the operator T̂X

T̂X ¼ �
�h2

2l
r2 þ 2ffiffiffiffi

D
p r

ffiffiffiffi
D
p
r

� �
: ð22Þ

The operator T̂X can be shown to satisfy the symmetry
properties of the octahedral group, namely, it is
invariant under the action of the 24 operations of the
group O [38, 39, 40, 41].

Since the wavefunction is a polynomial of degree k in
the n’s its behaviour under the inversion operation is
directly determined from the parity of the polynomial
itself, namely an even k gives an even wavefunction and
an odd k gives an odd eigenfunction.

Moreover Eq. (20), giving the general form for the
kinematic invariant wavefunctions for any k, can be
modified by noticing that only the Jacobi triple product

can be odd under the inversion operation. So the form
for odd values of the k quantum number is

Wkðn1; n2; n3Þ ¼ n1n2n3
Xk

ði;j;k;iþjþk¼kÞ
Ck�3

ijk ni
1n

j
2n

k
3; k odd ;

ð23Þ
where the wavefunction for k odd is given by wavefunc-
tion for (k-3) multiplied by the factor n1n2n3 and where
k = 0,2,4,. . ..

The symmetry group of the kinematic invariant
wavefunctions can be extended in order to include the
inversion operation. We chose to take into account of
this extension in a simple way, obtaining group O plus
the inversion, i.e. the Oh group. As a consequence the
functions Wk must belong to the irreps of the Oh group.

Owing to the constraint K ¼ 0 it can be demonstrated
that only irrep A1 for even values of k and irrep A02 for
odd k’s are consistent with the boundary conditions [9].

As a consequence of the symmetry properties of the
wavefunction, the following relationships hold for the C
coefficients:

Cijk ¼ Cjik ¼ Cjki ¼ Ckji ¼ Ckij ¼ Cikj : ð24Þ
In other words the C coefficients are invariant under
permutations of their indices (i; j; k).

We can propose as an example the case k = 4,

Wk¼4 ¼ C1ðn41 þ n42 þ n43Þ þ C2ðn21n22 þ n21n
2
3 þ n22n

2
3Þ ;
ð25Þ

where, by virtue of the conditions in Eq. (24), the
following holds:

C1 ¼ C400 ¼ C040 ¼ C004; C2 ¼ C220 ¼ C022 ¼ C202 :

ð26Þ
A definitive proof of the invariance of the wavefunctions
in Eqs. (20) and (23) under the action of the Oh group
can be obtained by examining the symmetry operations
of Oh in a matrix form. It can be seen that all operations
of the group lead to a permutations of the n’s plus
eventually a change of sign of one, two or three of the
n’s. So, to represent the symmetry operations we deal
with 3�3 orthogonal matrices containing three unit
vectors.

We will use code symbols for the matrices according
to the following examples. For the identity matrix E,

E ¼
1 0 0

0 1 0

0 0 1

0
@

1
A ; ð27Þ

we use the notation (1, 2, 3) and for the matrix R̂ð ^n1n3; pÞ
corresponding to a rotation of p around the n2-axis,

R̂ð ^n1n3; pÞ ¼
0 0 1

0 �1 0

1 0 0

0
@

1
A ; ð28Þ

we use ð3;�2; 1Þ.
In other words, in this notation the first number of

the triplet indicates in what position the 1 is placed in the
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first row, the second number indicates the position in the
second row and so on. The minus sign, where present,
stands for �1.

We now report the complete list of the operations of
the octahedral group O according to our notation:

ð2; 3; 1Þ ð3; 1; 2Þ ð�2;�3; 1Þ ð�3;�1; 2Þ
ð�2; 3;�1Þ ð�3; 1;�2Þ ð2;�3;�1Þ ð3;�2;�1Þ

� �

8C3 class ;

ð�1;�2; 3Þ ð1;�2;�3Þ ð�1; 2;�3Þ½ � 3C2
4 class ;

ð3;�2;1Þ ð�1;3;2Þ ð2;1;�3Þ
ð�3;�2;�1Þ ð�1;�3;�2Þ ð�2;�1;�3Þ

� �
6C2 class ;

ð2;�1; 3Þ ð1; 3;�2Þ ð�3; 2; 1Þ
ð�2; 1; 3Þ ð1;�3;�2Þ ð3; 2;�1Þ

� �
6C4 class :

We do not write explicitly the inversion operation
[matrix ð�1;�2;�3Þ] and the additional 24 symmetry
operations of the group Oh since these can be simply
obtained by changing the signs of the elements in the
matrices.

By using the matrix form of the symmetry operations,
it can be verified that the wavefunctions in the form of
Eq. (20) and Eq. (23), are Oh-invariant as a consequence
of the relationships of Eq. (24).

6 Angular parameterization of the kinematic invariant
wavefunctions

We have seen in the previous sections that the kine-
matic invariant wavefunctions are homogeneous
polynomials of degree k in the ni’s. In other words they
are a sum of terms of degree k, which are products of the
ni’s.

If we introduce an angular parameterization of
(n1; n2; n3) involving the hyperradius q plus two angular
variables, for example, ðq sin h cos/; q sin h sin/;
q cos hÞ, then the wavefunction Wk becomes a factor qk

times an angular wavefunctions XkðXÞ:

Wkðn1; n2; n3Þ ¼ qkXkðXÞ ; ð29Þ
where X denotes collectively the angular variables.Then
to obtain the angular part XkðXÞ we need only to factor
qk out of the wavefunction Wk.

A more direct route to do that is to represent
the angular wavefunction XkðXÞ as a linear combination
of spherical harmonics Ylmðh;/Þ [42, 43]. Since
the Wkðn1; n2; n3Þ is a polynomial of degree k, then only
the spherical harmonics with l � k contribute to the
expansion. So, we have

XkðXÞ ¼
Xk

l;m

ak
lmYlmðh;/Þ ; ð30Þ

where the ak
lm’s are the coefficients of the linear

combination. The issue is to determine the ak
lm’s.

In Sect. 4 and 5 we obtained the C coefficients for the
wavefunctions in Eqs. (20) and (23) by solving Eq. (21);

now we can obtain the a coefficients by solving the
angular part of Eq. (21):

� �h2

2lq2
r2

X þ
2ffiffiffiffiffiffiffiffiffiffiffi

DðXÞ
p rX

ffiffiffiffiffiffiffiffiffiffiffi
DðXÞ

p
rX

 !
; ð31Þ

where r2
X and rX are the usual Laplacian and gradient

operators in ordinary spherical coordinates. DðXÞ is the
angular part of the volume element D (see Sect. 4):

DðXÞ ¼ ðsin2 h cos 2/Þðcos2 h� sin2 h cos2 /Þ
� ðcos2 h� sin2 h sin2 /Þ

Dðn1; n2; n3Þ ¼ q6DðXÞ : ð32Þ
Another way to obtain the angular part of the kinematic
invariant wavefunction consists in representing the
quantities n21, n22 and n23 as a function of spherical
harmonics and then substituting them into the wave-
function Wkðn1; n2; n3Þ obtained as a solution of Eq. (21).

For example, for n1 we have:

n21 ¼ q2 1

3
1� 2

ffiffiffi
p
5

r
Y20

� �
�

ffiffiffiffiffiffi
2p
15

r
ðY22 þ Y2�2Þ

" #
: ð33Þ

Following this procedure, one may calculate, as an
example, the angular part of the wavefunction
Wk¼4ðn1; n2; n3Þ as obtained from Eq. (21),

Wk¼4ðn1; n2; n3Þ ¼ 2ðn21 þ n22 þ n23Þ
� 7ðn21n22 þ n21n

2
3 þ n22n

2
3Þ ; ð34Þ

and, after substitutions

Wk¼4 ¼
q4

15
22

ffiffiffiffiffiffi
5p
14

r
ðY44 þ Y4�4Þ þ 22

ffiffiffi
p
p

Y40 � 3

 !
:

ð35Þ
The main difficulty of the substitution procedure is
encountered when, especially for the higher values of the
quantum number k, multiple products of the n2’s are
met, leading to products of spherical harmonics.

Obviously the products of spherical harmonics of
whatever order, can be reduced to a sum of simple
spherical harmonics by applying to them iteratively the
well-known Clebsch–Gordan series [42]. The formula for
the product of two spherical harmonics is

Yl1m1
Yl2m2

¼
X
LM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4pð2Lþ 1Þ

s

� CL0
l10l20CLM

l1m1l2m2
YLM ; ð36Þ

where the symbols CLM
l1m1l2m2

are Clebsch–Gordan coeffi-
cients and the two indices L and M run over all the
values permitted by the usual rules for the sum of
angular momenta.

Whatever may be the approach to the calculation of
the angular part XkðXÞ of the kinematic invariant
wavefunctions, it is useful to symmetrize the spherical
harmonics according to the fact that the wavefunction
must belong to the A1 and A02 irreps of the Oh symmetry
group. Namely, none of the spherical harmonics in the
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sum representing the wavefunction should contain terms
with different symmetry components.So we need to
project out the right symmetry components for each of
the spherical harmonics by means of the projection
operators. It is worth noting that symmetry with respect
to the inversion operation is completely determined by
the quantum number k for the wavefunctions and by l
for the spherical harmonics. So we can work with the O
group instead of the Oh group.

The projection operator P̂A1
for the A1 irrep of the O

group has the following form:

P̂A1
¼ 1

24

X
R

v�A1
ðRÞPR ; ð37Þ

where the sum runs over the 24 operations of the group,
PR is the operator corresponding to the symmetry
operation R and vA1 Rð Þ is the character of the operation
R in the A1 irrep of the group O.

Since we reduced our analysis to group O by virtue of
the simple behaviour of the Wk and of the spherical
harmonics under the action of the inversion operation,
we do not need to use the projection operator for the A02
irrep. We simply project out applying the operator in
Eq. (37) and in the case of odd values of the quantum
number k (or l for the spherical harmonics), we assume
the result to be the A02 symmetry component of the
function.

6.1 The projection of the spherical harmonics

In the previous section we outlined a general procedure
to obtain the angular part XkðXÞ of the kinematic
invariant wavefunctions Wk, and suggested the advan-
tages of stressing their symmetry properties. To this aim,
the key point is the projection of the right symmetry
component of the spherical harmonics, which we use to
represent XkðXÞ in a finite sum. In the following we
illustrate the way to obtain these projections in a
systematic manner.

If a given spherical harmonic Ylm has the required
symmetry, then

P̂A1
Ylm 6¼ 0 ; ð38Þ

otherwise the projection will vanish.
We have shown in the previous sections that the 24

symmetry operations of group O are rotations. These
rotations act, according to a passive representation, by a
corresponding rotation of the reference frame to which
the harmonics are referred. These rotations can be
parameterized, as usual, by means of three Euler angles
a; b and c.

Under the effect of a rotation of the reference frame a
spherical harmonic becomes a linear combination of
Ylm’s of the same order l. The coefficients of the linear
transformation are the Wigner functions Dl

m0mðabcÞ [42].
Therefore, for a symmetry operator P̂R of group O, we
write:

P̂RYlm ¼
X

m0
Dl

m0mðaRbRcRÞYlm0 ; ð39Þ

where aR; bR and cR are three Euler angles describing the
rotation R according to the symmetry operation.

As a consequence, the explicit form of the projector
operator P̂A1

acting on the spherical harmonics is:

P̂A1
Ylm ¼

1

24

X
R

v�A1

X
m0

Dl
m0mðaRbRcRÞYlm0 : ð40Þ

By using the values of the Euler angles for the symmetry
operations of group O, the explicit values of the Wigner
D functions, and exploiting the simple behaviour of the
harmonics under inversion, we find that for a given odd
value of l only for m = �2;�6;�10; . . . the function
contains symmetry components of the A02 irrep of group
Oh and for a given even value of l only for m=
0;�4;�8; . . . the function contains symmetry compo-
nents the of the A1 irrep of group Oh.

The symmetrized spherical harmonics are found to be

P̂A1
Ylm ¼

1

6
ðYlm þ Yl�mÞ

� 2

3

X
m0¼0;�4;�8;...

dl
m0mð

p
2
ÞYlm0 ð41Þ

for even values of l, and

P̂A0
2
Ylm ¼

1

6
Ylm � Yl�mð Þ

� 2

3

X
m0¼�2;�6;�10;...

dl
m0mð

p
2
ÞYlm0 ð42Þ

for odd values of l.

6.2 Degeneracy of the kinematic invariant wavefunctions

The degeneracy of the eigenfunctions Wk depends on the
degeneracy of the corresponding angular parts XkðXÞ.
The degeneracy of the XkðXÞ’s is not zero if and only if it
is possible to construct a polynomial (in sines and
cosines) of degree k belonging to the A1 and A02 irreps of
the Oh symmetry group, respectively, for even and odd
values of the quantum number k.

However XkðXÞ is a linear combination of spherical
harmonics Ylm with l � k. Thus the XkðXÞ wavefunction
with quantum number k has nonzero degeneracy if and
only if the corresponding spherical harmonic with l ¼ k
has nonzero projection under the action of the operators
P̂A1

(k even) or P̂A0
2
(k odd).

Obviously, degeneracies higher than 1 have to be
expected since the Ylm’s can generate reducible repre-
sentations of the Oh group. In this case the number of
degenerate wavefunctions for a given k corresponds to
the coefficient of the A1 (even k) or A02 (odd k) irreps in
the decomposition of the reducible representation in
terms of the reducible ones.

For example, if we denote as C a given reducible
representation of the Oh symmetry group, generated
from the Yl¼k;m spherical harmonic, and

C ¼ 2A1 þ 2E þ . . .

then the degeneracy would be equal to 2.
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The contribution to the reducible representation of
the Oh group can be calculated by standard group the-
ory, and if we denote as N the degeneracy we obtain for
the even-k case (again restricting the analysis to the O
group)

Nðk;A1Þ ¼
1

24

X
R

vkðxRÞvA1ðRÞ ; ð43Þ

where R runs on the operations of the O symmetry
group, xR is the angle of the rotation corresponding to
the symmetry operation R, in an axis–angle parameter-
ization, and vkðxRÞ and vA1 Rð Þ are the characters of the
symmetry operation R in the reducible and irreducible
representation, respectively.

For the characters vðkÞðxRÞ of the reducible repre-
sentation, we have [42]

vkðxRÞ ¼
sin ð2kþ 1Þ xR

2

� �
xR
2

: ð44Þ

7 Conclusions

In summary, we have found a group-theoretical proce-
dure to determine the four-body hyperspherical har-
monics for zero angular momentum and zero kinematic
rotations. The procedure is based on a geometrical
approach whose key step is the understanding of the
symmetry properties that the harmonics must satisfy.

The extension of this work should be the enlargement
of the harmonic basis to comprise the cases with non-
zero angular momenta, while the extension to N > 4
requires care only regarding the range of a coordinate.
For a complete alternative solution of the construction
of a harmonic basis set for the four-body problem, see
Ref. [15], where a recurrence algorithm is described and
exploited.
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